1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{lll}x & y & y \\ y & x & y \\ y & y & x\end{array}\right]$ is a matrix such that $5 A^{-1}=\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$, then $A^2-4 A=$

A
$5 A^{-1}$
B
51
C
0
D
1
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{lll}9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2\end{array}\right]$ and $A A^T-A^2=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\sum\limits_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} a_{i j}=$

A
35
B
0
C
33
D
1
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $a \neq b \neq c, \Delta_1=\left[\begin{array}{lll}1 & a^2 & b c \\ 1 & b^2 & c a \\ 1 & c^2 & a b\end{array}\right]$, $\Delta_2=\left[\begin{array}{ccc}1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3\end{array}\right]$ and $\frac{\Delta_1}{\Delta_2}=\frac{6}{11}$, then $11(a+b+c)=$

A
0
B
1
C
$a b+b c+c a$
D
$6(a b+b c+c a)$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The system of equations $x+3 y+7=0$, $3 x+10 y-3 z+18=0$ and $3 y-9 z+2=0$ has

A
unique solution.
B
infinitely many solutions.
C
no solution.
D
finite number of solution.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12