1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $a \neq b \neq c, \Delta_1=\left[\begin{array}{lll}1 & a^2 & b c \\ 1 & b^2 & c a \\ 1 & c^2 & a b\end{array}\right]$, $\Delta_2=\left[\begin{array}{ccc}1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3\end{array}\right]$ and $\frac{\Delta_1}{\Delta_2}=\frac{6}{11}$, then $11(a+b+c)=$

A
0
B
1
C
$a b+b c+c a$
D
$6(a b+b c+c a)$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The system of equations $x+3 y+7=0$, $3 x+10 y-3 z+18=0$ and $3 y-9 z+2=0$ has

A
unique solution.
B
infinitely many solutions.
C
no solution.
D
finite number of solution.
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x$ and $y$ are two positive real numbers such that $x+i y=\frac{13 \sqrt{-5+12 i}}{(2-3 i)(3+2 i)}$, then $13 y-26 x=$
A
28
B
39
C
42
D
54
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $z=x+i y$ and if the point $P$ represents $z$ in the argand plane, then the locus of $z$ satisfying the equation $|z-1|+|z+i|=2$ is
A
$15 x^2-2 x y+15 y^2-16 x+16 y-48=0$
B
$3 x^2+2 x y+3 y^2-4 x-4 y=0$
C
$3 x^2-2 x y+3 y^2-4 x+4 y=0$
D
$15 x^2+2 x y+15 y^2+16 x-16 y-48=0$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12