1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the function $f(x)=x^3+a x^2+b x+40$ satisfies the conditions of Rolle's theorem on the interval $[-5,4]$ and $-5,4$ are two roots of the equation $f(x)=0$, then one of the values of $c$ as stated in that theorem is
A
3
B
$\frac{1+\sqrt{67}}{3}$
C
$\frac{1+\sqrt{65}}{3}$
D
-2
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x$ and $y$ are two positive integers such that $x+y=24$ and $x^3 y^5$ is maximum, then $x^2+y^2=$
A
288
B
296
C
306
D
320
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \sqrt{4 \cos ^2 x-5 \sin ^2 x} \cos x d x=$
A
$\frac{1}{2} \cos x \sqrt{4-9 \sin ^2 x}+\frac{2}{3} \sin ^{-1}\left(\frac{3 \sin x}{2}\right)+c$
B
$\frac{1}{2} \sin x \sqrt{4-9 \sin ^2 x}+\frac{2}{3} \cos ^{-1}\left(\frac{3 \cos x}{2}\right)+c$
C
$\frac{1}{2} \cos x \sqrt{1-9 \cos ^2 x}+\frac{2}{3} \sin ^{-1}\left(\frac{3 \cos x}{2}\right)+c$
D
$\frac{1}{2} \sin x \sqrt{4-9 \sin ^2 x}+\frac{2}{3} \sin ^{-1}\left(\frac{3 \sin x}{2}\right)+c$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int\left(\frac{4 \tan ^4 x+3 \tan ^2 x-1}{\tan ^2 x+4}\right) d x=$
A
$4 \tan x-\frac{17}{4} \tan ^{-1}\left(\frac{\tan x}{4}\right)+c$
B
$4 \tan x-\frac{17}{4} \tan ^{-1}\left(\frac{\tan x}{2}\right)+c$
C
$4 \tan x-\frac{17}{2} \tan ^{-1}\left(\frac{\tan x}{2}\right)+c$
D
$2 \tan x-\frac{17}{2} \tan ^{-1}\left(\frac{\tan x}{2}\right)+c$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12