1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the function $f(x)=\left\{\begin{array}{cl}\frac{\left(e^{k x}-1\right) \sin k x}{4 \tan x} & x \neq 0 \\ P & x=0\end{array}\right.$ is differentiable at $x=0$, then
A
$P=0, f^{\prime}(0)=\frac{k^{2}}{4}$
B
$P=0, f^{\prime}(0)=-\frac{1}{2}$
C
$P=k, f^{\prime}(0)=-\frac{k^{2}}{4}$
D
$P=k, f^{\prime}(0)=-\frac{1}{4}$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\log \left(x-\sqrt{x^{2}-1}\right)$, then $\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}+e^{y}+\sqrt{x^{2}-1}=$
A
0
B
1
C
$\sqrt{x^{2}-1}$
D
$x$
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The maximum interval in which the slopes of the tangents drawn to the curve $y=x^{4}+5 x^{3}+9 x^{2}+6 x+2$ increase is
A
$\left[\frac{-3}{2},-1\right]$
B
$\left[1, \frac{3}{2}\right]$
C
$R-\left[1, \frac{3}{2}\right]$
D
$R-\left[\frac{-3}{2},-1\right]$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\{P(\alpha, \beta) /$ the tangent drawn at $P$ to the curve $y^{3}-3 x y+2=0$ is horizontal line $\}$ and $B=\{Q(a, b) /$ the tangent drawn at $Q$ to the curve $y^{3}-3 x y+2=0$ is a vertical line $\}$, then $n(A)+n(B)=$
A
12
B
1
C
0
D
4
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12