1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The system of equations $x+3 b y+b z=0, x+2 a y+a z=0$ and $x+4 c y+c z=0$ has
A
only zero solution for any values of $a, b, c$
B
non-zero solution for any values of $a, b, c$
C
non-zero solution, whenever $b(a+c)=2 a c$
D
non-zero solution, wherever $a+c=2 b$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\left|\begin{array}{ccc}\frac{-b c}{a^{2}} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{a c}{b^{2}} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{a b}{c^{2}}\end{array}\right|=$
A
0
B
4
C
-1
D
$\frac{a^{2}+b^{2}+c^{2}}{a^{2} b^{2} c^{2}}$
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z=x+i y$ satisfies the equation $z^{2}+a z+a^{2}=0, a \in R$, then
A
$|z|=|a|$
B
$|z-a|=|a|$
C
$z=|a|$
D
$z=a$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z_{1}, z_{2}, z_{3}$ are three complex numbers with unit modulus such that $\left|z_{1}-z_{2}\right|^{2}+\left|z_{1}-z_{3}\right|^{2}=4$, then $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}+z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}=$
A
0
B
$\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}$
C
$\left|z_{1}\right|^{2}-\left|z_{2}+z_{3}\right|^{2}$
D
1
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12