1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $0 \leq x \leq \frac{\pi}{2}$, then $\lim _{x \rightarrow a} \frac{|2 \cos x-1|}{2 \cos x-1}$
A
does not exist at all points in $\left[0, \frac{\pi}{2}\right]$
B
$=1$, when $a=\frac{\pi}{3}$
C
$=-1$, when $a=\frac{\pi}{3}$
D
$=1$, when $0 \leq a < \frac{\pi}{3}$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The real valued function $f(x)=\frac{|x-a|}{x-a}$ is
A
continuous only at $x=a$
B
discontinuous only for $x > a$
C
a constant function when $x > a$
D
strictly increasing when $x < a$
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=3 x^{15}-5 x^{10}+7 x^{5}+50 \cos (x-1)$, then $\lim\limits_{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$
A
-25
B
25
C
-10
D
10
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the function $f(x)=\left\{\begin{array}{cl}\frac{\left(e^{k x}-1\right) \sin k x}{4 \tan x} & x \neq 0 \\ P & x=0\end{array}\right.$ is differentiable at $x=0$, then
A
$P=0, f^{\prime}(0)=\frac{k^{2}}{4}$
B
$P=0, f^{\prime}(0)=-\frac{1}{2}$
C
$P=k, f^{\prime}(0)=-\frac{k^{2}}{4}$
D
$P=k, f^{\prime}(0)=-\frac{1}{4}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12