1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Suppose, $\theta_{1}$ and $\theta_{2}$ are such that $\left(\theta_{1}-\theta_{2}\right)$ lies in 3rd or 4th quadrant. If $\sin \theta_{1}+\sin \theta_{2}=-\frac{21}{65}$ and $\cos \theta_{1}+\cos \theta_{2}=-\frac{27}{65}$, then $\cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)=$
A
$\frac{3}{\sqrt{150}}$
B
$\frac{3}{\sqrt{130}}$
C
$-\frac{3}{\sqrt{130}}$
D
$-\frac{3}{\sqrt{150}}$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A$ is the solution set of the equation $\cos ^{2} x=\cos ^{2} \frac{\pi}{6}$ and $B$ is the solution set of the equation $\cos ^{2} x=\log _{16} P$ where, $P+\frac{16}{P}=10$, then, $B-A=$
A
$\left\{x \in R / x=2 n \pi \pm \frac{\pi}{4}, 2 n \pi \pm \frac{\pi}{3} n=0,12,3 \ldots\right\}$
B
$\left\{x \in R / x=2 n \pi \pm \frac{\pi}{3}, 2 n \pi \pm \frac{2 \pi}{3} n=0,1,2,3 \ldots\right\}$
C
$\left\{x \in R / x=2 n \pi \pm \frac{\pi}{6}, 2 n \pi \pm \frac{\pi}{12} n=0,1,2,3 \ldots\right\}$
D
$\left\{x \in R / x=2 n \pi \pm \frac{\pi}{8}, 2 n \pi \pm \frac{\pi}{16} n=0,1,2,3 \ldots\right\}$
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The trigonometric equation $\sin ^{-1} x=2 \sin ^{-1} a$, has a solution
A
only when $\frac{1}{\sqrt{2}} < a < \frac{1}{2}$
B
for all real values of (a)
C
only when $|a| \leq \frac{1}{\sqrt{2}}$
D
only when $|a| \geq \frac{1}{\sqrt{2}}$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\sin h x=\frac{12}{5}$, then $\sin h 3 x+\cos h 3 x=$
A
125
B
169
C
144
D
216
EXAM MAP