1
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the sum of mean and variance of a binomial distribution for 5 trials is 1.8, then probability of a success is

A
0.2
B
0.6
C
0.4
D
0.8
2
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$y=\sqrt{e^{\sqrt{x}}}$$, then $$\frac{d y}{d x}=$$

A
$$\frac{e^{\sqrt{x}}}{4 \sqrt{x}}$$
B
$$\frac{\mathrm{e}^{\sqrt{x}}}{4 x}$$
C
$$\frac{e^{\frac{\sqrt{x}}{2}}}{4 \sqrt{x}}$$
D
$$\frac{e^{\sqrt{x}}}{2 \sqrt{x}}$$
3
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is 20 square units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+\overline{\mathrm{b}}$$ and $$2 \overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides in square units is

A
105
B
120
C
75
D
140
4
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x) = {{{4^{x - \pi }} + {4^{x - \pi }} - 2} \over {{{(x - \pi )}^2}}}$$, for $$x \ne \pi $$, is continuous at $$x=\pi$$, then k =

A
$$2\log2$$
B
$$(\log2)^2$$
C
$$-(\log2)^2$$
D
$$8(\log2)^2$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12