1
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{m}$$ is order and $$\mathrm{n}$$ is degree of the differential equation $$y=\frac{d p}{d x}+\sqrt{a^2 p^2-b^2}$$, where $$p=\frac{d y}{d x}$$, then the value of $$m+n$$ is

A
2
B
3
C
4
D
5
2
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The surface area of a spherical balloon is increasing at the rate $$2 \mathrm{~cm}^2 / \mathrm{sec}$$. Then rate of increase in the volume of the balloon is , when the radius of the balloon is $$6 \mathrm{~cm}$$.

A
$$4 \mathrm{~cm}^3 / \mathrm{sec}$$.
B
$$16 \mathrm{~cm}^3 / \mathrm{sec}$$.
C
$$36 \mathrm{~cm}^3 / \mathrm{sec}$$.
D
$$6 \mathrm{~cm}^3 / \mathrm{sec}$$.
3
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The p.m.f. of a random variable X is $$\mathrm{P(X = x) = {1 \over {{2^5}}}\left( {_x^5} \right),x = 0,1,2,3,4,5}=0$$ then

A
$$\mathrm{P}(\mathrm{X} \leq 2)<\mathrm{P}(\mathrm{X} \geq 3)$$
B
$$\mathrm{P}(\mathrm{X} \leq 2)>\mathrm{P}(\mathrm{X} \geq 3)$$
C
$$\mathrm{P}(\mathrm{X} \leq 2)=2 \mathrm{P}(\mathrm{X} \geq 3)$$
D
$$\mathrm{P}(\mathrm{X} \leq 2)=\mathrm{P}(\mathrm{X} \geq 3)$$
4
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are vectors such that $$|\overline{\mathrm{a}}|=5,|\overline{\mathrm{b}}|=4,|\overline{\mathrm{c}}|=3$$ and each is perpendicular to the sum of the other two, then $$|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^2=$$

A
60
B
12
C
47
D
50
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12