If $$A^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$$ and $$B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$$, then $$(A B)^{-1}=$$
Two unbiased dice are thrown. Then the probability that neither a doublet nor a total of 10 will appear is
The population of a city increases at a rate proportional to the population at that time. If the population of the city increase from 20 lakhs to 40 lakhs in 30 years, then after another 15 years the population is
Let $$A=[a, b, c, d], B=[1,2,3]$$. Relation $$R_1, R_2, R_3, R_4$$ are as follows :
$$\begin{aligned} & R_1=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{d}, 2)] \\ & \mathrm{R}_2=[(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1),(\mathrm{d}, 1)] \\ & \mathrm{R}_3=[(\mathrm{a}, 2),(\mathrm{b}, 3),(\mathrm{c}, 2),(\mathrm{d}, 2)] \\ & \mathrm{R}_4=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{a}, 2),(\mathrm{d}, 3)] \text {, then } \end{aligned}$$