The population of a city increases at a rate proportional to the population at that time. If the population of the city increase from 20 lakhs to 40 lakhs in 30 years, then after another 15 years the population is
Let $$A=[a, b, c, d], B=[1,2,3]$$. Relation $$R_1, R_2, R_3, R_4$$ are as follows :
$$\begin{aligned} & R_1=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{d}, 2)] \\ & \mathrm{R}_2=[(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1),(\mathrm{d}, 1)] \\ & \mathrm{R}_3=[(\mathrm{a}, 2),(\mathrm{b}, 3),(\mathrm{c}, 2),(\mathrm{d}, 2)] \\ & \mathrm{R}_4=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{a}, 2),(\mathrm{d}, 3)] \text {, then } \end{aligned}$$
If $$\cos x=\frac{24}{25}$$ and $$x$$ lięs in first quadrant, then $$\sin \frac{x}{2}+\cos \frac{x}{2}=$$
If $$\int_\limits2^e\left[\frac{1}{\log x}-\frac{1}{(\log x)^2}\right] d x=a+\frac{b}{\log 2}$$, then