1
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $X$ is a.r.v. with c.d.f $F(x)$ and its probability distribution is given by

$X=x$ $-1.5$ $-0.5$ 0.5 1.5 2.5
$P(X=x)$ 0.05 0.2 0.15 0.25 0.35

then, $F(1.5)-F(-0.5)=$

A
0.2
B
0.4
C
0.1
D
0.3
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{d x}{x^2+4 x+13}=$$

A
$\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)+C$
B
$\frac{1}{6} \log \left(\frac{x-1}{x+5}\right)+C$
C
$3 \tan ^{-1}\left(\frac{x+2}{3}\right)+C$
D
$\frac{1}{6} \tan ^{-1}\left(\frac{x+2}{3}\right)+C$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^2 y^2=\sin ^{-1} \sqrt{x^2+y^2}+\cos ^{-1} \sqrt{x^2+y^2}$ then $\frac{d y}{d x}=$

A
$\frac{-x}{y}$
B
$\frac{x}{y}$
C
$\frac{-y}{x}$
D
$\frac{y}{x}$
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\frac{\pi}{2}} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=$$

A
$\frac{\pi}{8}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{2}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12