1
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int_\limits0^1\left(1-\frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}+\ldots\right.$ upto $\left.\infty\right) e^{2 x} d x=$

A
$e^2$
B
$e+1$
C
$e$
D
$e-1$
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The principal solutions of $\cot x=\sqrt{3}$ are

A
$\frac{\pi}{6}, \frac{7 \pi}{6}$
B
$\frac{\pi}{3}, \frac{7 \pi}{3}$
C
$\frac{\pi}{4}, \frac{5 \pi}{4}$
D
$\frac{\pi}{6}, \frac{5 \pi}{6}$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The statement pattern $p \wedge(q \vee \sim p)$ is equivalent to

A
$p \wedge q$
B
$q \wedge \sim p$
C
$p \vee q$
D
$p \rightarrow q$
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The LPP to maximize $Z=x+y$, subject to $x+y \leq 1,2 x+2 y \geq 6, x \geq 0, y \geq 0$ has

A
infinite solutions
B
one solution
C
no solution
D
two solutions
MHT CET Papers
EXAM MAP