1
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of a plane containing the point $(1,-1,2)$ and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$ is

A
$r(4 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=15$
B
$\mathbf{r}(5 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})=5$
C
$\mathbf{r}(5 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-\hat{\mathbf{k}})=5$
D
$\mathbf{r}(5 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-\hat{\mathbf{k}})=7$
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\left(1+y^2\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ is

A
$x \cdot e^{\tan ^{-1} y}=\frac{\left(e^{\tan ^{-1} y}\right)^2}{2}+C$
B
$e^{\tan ^{-1} y}=\left(e^{\tan ^{-1} x}\right)^2+C$
C
$x \cdot e^{\tan ^{-1} y}=\frac{\left(e^{\tan ^{-1} x} x\right)^2}{2}+C$
D
$e^{\tan ^{-1} y}=\left(e^{\tan ^{-1} y}\right)^2+C$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line passing through $(1,2,3)$ and perpendicular to the lines $x-1=\frac{y+2}{2}=\frac{z+4}{4}$ and $\frac{x-1}{2}=\frac{y-2}{2}=z+3$ is

A
$x-1=\frac{y-2}{2}=\frac{z-3}{4}$
B
$\frac{x-1}{4}=\frac{2-y}{5}=\frac{z-3}{2}$
C
$\frac{x-1}{6}=\frac{y-2}{7}=\frac{z-3}{2}$
D
$\frac{x-1}{6}=\frac{2-y}{7}=\frac{z-3}{2}$
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The cofactors of the elements of the first column of the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$ are

A
$0,-7,2$
B
$-1,3,-2$
C
$0,-8,4$
D
$0,-1,1$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12