1
GATE CSE 1993
Subjective
+5
-0
Show that proposition $$C$$ is a logical consequence of the formula $$A \wedge \left( {A \to \left( {B \vee C} \right) \wedge \left( {B \to \sim A} \right)} \right)$$ using truth tables.
2
GATE CSE 1993
+1
-0.3
Let $$S$$ be an infinite set and $${S_1},\,\,{S_2},....\,\,{S_n}$$ be sets such that $${S_1} \cup {S_2} \cup ....... \cup {S_n} = S$$. Then
A
At least one of the sets $${S_i}$$ is a finite set.
B
Not more than one of the sets $${S_i}$$ can be finite
C
At least one of sets $${S_i}$$ is infinite
D
Not more than one the sets $${S_i}$$ is an a infinite set.
3
GATE CSE 1993
+1
-0.3
Let $${\rm A}$$ be a finite set of size $$n$$. The number of elements in the power set of $${\rm A} \times {\rm A}$$ is
A
$${2^{{2^n}}}$$
B
$${2^{{n^2}}}$$
C
$${2^n}$$
D
$${n^2}$$
4
GATE CSE 1993
MCQ (More than One Correct Answer)
+1
-0.3
The eigen vector (s) of the matrix
$$\left[ {\matrix{ 0 & 0 & \alpha \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right],\alpha \ne 0$$ is (are)
A
$$\left( {0,0,\alpha } \right)$$
B
$$\left( {\alpha ,0,0} \right)$$
C
$$\left( {0,0,1} \right)$$
D
$$\left( {0,\alpha ,0} \right)$$
GATE CSE Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET