The resistance of $$0.01 \mathrm{~m} \mathrm{~KCl}$$ solution at $$298 \mathrm{~K}$$ is $$1500 \Omega$$. If the conductivity of $$0.01 \mathrm{~m} \mathrm{~KCl}$$ solution at $$298 \mathrm{~K}$$ is $$0.1466 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$$. The cell constant of the conductivity cell in $$\mathrm{cm}^{-1}$$ is
$$\mathrm{H}_2(g)+2 \mathrm{AgCl}(s) \rightleftharpoons 2 \mathrm{Ag}(s)+2 \mathrm{HCl}(a q)$$
$$E_{\text {cell }}^{\circ}$$ at $$25^{\circ} \mathrm{C}$$ for the cell is $$0.22 \mathrm{~V}$$. The equilibrium constant at $$25^{\circ} \mathrm{C}$$ is
The pair of electrolytes that posses same value for the constant $$(A)$$ in the Debye-Huckel-Onsager equation, $$\Lambda_m=\Lambda_m^{\circ}-A \sqrt{C}$$ is
Given $$E_{F{e^{3 + }}/F{e^{2 + }}}^o = + 0.76\,V$$ and $$E_{\mathrm{I}_2 / \mathrm{I}^{-}}^0=+0.55 \mathrm{~V}$$. The equilibrium constant for the reaction taking place in galvanic cell consisting of above two electrodes is $$\left[\frac{2303 R T}{F}=0.06\right]$$