1
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The vertical angle of a right circular cone is $60^{\circ}$. If water is being poured in to the cone at the rate of $\frac{1}{\sqrt{3}} \mathrm{~m}^3 / \mathrm{min}$, then the rate ( $\mathrm{m} / \mathrm{min}$ ) at which the radius of the water level is increasing when the height of the water level is 3 m is
A
$\frac{1}{3 \sqrt{3 \pi}}$
B
$\frac{1}{9 \sqrt{3 \pi}}$
C
$\frac{1}{9 \pi}$
D
$\frac{1}{3 \pi}$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
A right circular cone is inscribed in a sphere of radius 3 units. If the volume of the cone is maximum, then semi-vertical angle of the cone is
A
$\frac{\pi}{4}$
B
$\frac{\pi}{6}$
C
$\tan ^{-1}(\sqrt{2})$
D
$\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=k x^3-3 x^2-12 x+8$ is strictly decreasing for all $x \in R$, then
A
$k<-\frac{1}{4}$
B
$k>-\frac{1}{4}$
C
$k>\frac{1}{4}$
D
$k<\frac{1}{4}$
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int e^{-2 x}\left(\tan 2 x-2 \sec ^2 2 x \tan 2 x\right) d x=$
A
$e^{-2 x} \tan 2 x+c$
B
$-\frac{e^{-2 x}}{2}\left[\sec ^2 2 x+\tan 2 x\right]+c$
C
$-\frac{e^{-2 x}}{2}\left[\tan 2 x-\sec ^2 2 x\right]+c$
D
$e^{-2 x} \sec ^2 2 x+c$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12