1
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$f$ is a real valued function satisfying the relation $f\left(3 x+\frac{1}{2 x}\right)=9 x^2+\frac{1}{4 x^2}$. If $f\left(x+\frac{1}{x}\right)=1$, then $x$ is equal to
A
$\pm 2$
B
$\pm 1$
C
$\pm 3$
D
$\pm 6$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\frac{1}{3 \cdot 6}+\frac{1}{6 \cdot 9}+\frac{1}{9 \cdot 12}+\ldots \ldots .$. to 9 terms $=$
A
$\frac{10}{99}$
B
$\frac{11}{108}$
C
$\frac{1}{10}$
D
$\frac{1}{90}$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha, \beta$ and $\gamma$ are the roots of the equation $\left|\begin{array}{lll}x & 2 & 2 \\ 2 & x & 2 \\ 2 & 2 & x\end{array}\right|=0$ and $\min (\alpha, \beta, \gamma)=\alpha$, then $2 \alpha+3 \beta+4 \gamma$ is equal to
A
6
B
8
C
-6
D
-8
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ and $\mathrm{A}^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\sum_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} a_{i j}=$

A

$\frac{2}{3}$

B
$\frac{1}{3}$
C
1
D

17

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12