1
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\sqrt{x^2-a^2}}{x} d x=\ldots \ldots$$

A
$\sqrt{x^2-a^2}-a \cos ^{-1}\left(\frac{a}{x}\right)+c$
B
$x \sqrt{x^2-a^2}-\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c$
C
$\sqrt{x^2-a^2}+a \sec ^{-1}\left(\frac{x}{a}\right)+c$
D
$\sqrt{x^2-a^2}+\frac{1}{x} \sec ^{-1}(x)+c$
2
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=9 x+11 y$ subject to $3 x+2 y \leq 12,2 x+3 y \leq 12, x \geq 0, y \geq 0$ is $\ldots \ldots$.

A
44
B
54
C
36
D
48
3
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_0^4 \frac{1}{1+\sqrt{x}} d x=\ldots \ldots$$

A
$\log \left(\frac{e^4}{6}\right)$
B
$\log \left(\frac{e^4}{3}\right)$
C
$\log \left(\frac{e^4}{9}\right)$
D
$\log \left(\frac{e^3}{4}\right)$
4
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $\sin ^2 \theta=\frac{1}{2}$ in $[0, \pi]$ is ..........

A
three
B
four
C
two
D
one
MHT CET Papers
EXAM MAP