1
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\left(x^2+1\right)^2} d x=\ldots$$

A
$\tan ^{-1} x-\frac{1}{2 x\left(x^2+1\right)}+c$
B
$\frac{1}{2} \tan ^{-1} x+\frac{x}{2\left(x^2+1\right)}+c$
C
$\tan ^{-1} x+\frac{1}{x^2+1}+c$
D
$\tan ^{-1} x+\frac{1}{2\left(x^2+1\right)}+c$
2
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta=\frac{17 \pi}{3}$ then, $\tan \theta-\cot \theta=\ldots$

A
$\frac{1}{2 \sqrt{3}}$
B
$\frac{-1}{2 \sqrt{3}}$
C
$\frac{2}{\sqrt{3}}$
D
$-\frac{2}{\sqrt{3}}$
3
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $\log _{e^2}(\log x)$ with respect to $x$ is

A
$\frac{2}{x \log x}$
B
$\frac{1}{x \log x}$
C
$\frac{1}{x \cdot \log x^2}$
D
$\frac{2}{\log x}$
4
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$; with usual notations, if $\cos A=\frac{\sin B}{\sin C}$ then the triangle is ............

A
Acute angled triangle
B
Equilateral triangle
C
Obtuse angled triangle
D
Right angled triangle
MHT CET Papers
EXAM MAP