1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If function

$$\begin{aligned} f(x) & =x-\frac{|x|}{x}, x<0 \\ & =x+\frac{|x|}{x}, x>0 \\ & =1, \quad x=0, \text { then } \end{aligned}$$

A
$\lim _\limits{x \rightarrow 0^{-}} f(x)$ does not exist
B
$\lim _\limits{x \rightarrow 0^{+}} f(x)$ does not exist
C
$f(x)$ is continuous at $x=0$
D
$\lim _\limits{x \rightarrow 0^{-}} f(x) \neq \lim _\limits{x \rightarrow 0^{+}} f(x)$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, if $\tan A+\tan B+\tan C=6$ and $\tan A \cdot \tan B=2$ then $\tan C=$ ...........

A
3
B
4
C
1
D
2
3
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $P(6,10,10), Q(1,0,-5), R(6,-10, \lambda)$ are vertices of a triangle right angled at $Q$, then value of $\lambda$ is ............

A
0
B
1
C
3
D
2
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For L.P.P, maximize $z=4 x_1+2 x_2$ subject to $3 x_1+2 x_2 \geq 9, x_1-x_2 \leq 3, x_1 \geq 0, x_2 \geq 0$ has

A
infinite number of optimal solutions
B
unbounded solution
C
no solution
D
one optimal solution
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12