1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If function

$$\begin{aligned} f(x) & =x-\frac{|x|}{x}, x<0 \\ & =x+\frac{|x|}{x}, x>0 \\ & =1, \quad x=0, \text { then } \end{aligned}$$

A
$\lim _\limits{x \rightarrow 0^{-}} f(x)$ does not exist
B
$\lim _\limits{x \rightarrow 0^{+}} f(x)$ does not exist
C
$f(x)$ is continuous at $x=0$
D
$\lim _\limits{x \rightarrow 0^{-}} f(x) \neq \lim _\limits{x \rightarrow 0^{+}} f(x)$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, if $\tan A+\tan B+\tan C=6$ and $\tan A \cdot \tan B=2$ then $\tan C=$ ...........

A
3
B
4
C
1
D
2
3
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $P(6,10,10), Q(1,0,-5), R(6,-10, \lambda)$ are vertices of a triangle right angled at $Q$, then value of $\lambda$ is ............

A
0
B
1
C
3
D
2
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For L.P.P, maximize $z=4 x_1+2 x_2$ subject to $3 x_1+2 x_2 \geq 9, x_1-x_2 \leq 3, x_1 \geq 0, x_2 \geq 0$ has

A
infinite number of optimal solutions
B
unbounded solution
C
no solution
D
one optimal solution
MHT CET Papers
EXAM MAP