1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\lambda}{2}=\frac{z}{1}$ intersect each other, then $\lambda=\ldots \ldots$

A
$\frac{7}{2}$
B
$\frac{3}{2}$
C
$\frac{9}{2}$
D
$\frac{5}{2}$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=x$, when $x=0, y=1$ is ..............

A
$y=e^x+2$
B
$y=-e^x$
C
$y=-e^x+2$
D
$y=e^x$
3
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The p.d.f of a random variable $x$ is given by

$$\begin{aligned} & f(x)=\frac{1}{4 a}, \quad 00) \\ & =0 \text {, otherwise } \end{aligned}$$

and $P\left(x<\frac{3 a}{2}\right)=k P\left(x>\frac{5 a}{2}\right)$ then $k=$ ..............

A
1
B
$\frac{1}{4}$
C
$\frac{1}{8}$
D
$\frac{1}{2}$
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)=\frac{\left(e^{k x}-1\right) \tan k x}{4 x^2}, x \neq 0$

$$\qquad \qquad=16 \qquad x=0$$

is continuous at $x=0$, then $k=\ldots \ldots$

A
$\pm \frac{1}{8}$
B
$\pm 4$
C
$\pm 2$
D
$\pm 8$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12