1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The p.d.f of a random variable $x$ is given by

$$\begin{aligned} & f(x)=\frac{1}{4 a}, \quad 00) \\ & =0 \text {, otherwise } \end{aligned}$$

and $P\left(x<\frac{3 a}{2}\right)=k P\left(x>\frac{5 a}{2}\right)$ then $k=$ ..............

A
1
B
$\frac{1}{4}$
C
$\frac{1}{8}$
D
$\frac{1}{2}$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)=\frac{\left(e^{k x}-1\right) \tan k x}{4 x^2}, x \neq 0$

$$\qquad \qquad=16 \qquad x=0$$

is continuous at $x=0$, then $k=\ldots \ldots$

A
$\pm \frac{1}{8}$
B
$\pm 4$
C
$\pm 2$
D
$\pm 8$
3
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $y d x-x d y=x y d x$ is ......

A
$x^2=e^x y^2$
B
$x=y e^x$
C
$x y=e^x$
D
$x^2 y^2=\log x$
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=6 x+8 y$ subject to $x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0$ is $\ldots \ldots$.

A
72
B
42
C
96
D
24
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12