1
KCET 2023
MCQ (Single Correct Answer)
+1
-0

$$f: R \rightarrow R$$ and $$g:[0, \infty) \rightarrow R$$ defined by $$f(x)=x^2$$ and $$g(x)=\sqrt{x}$$. Which one of the following is not true?

A
$$(f \circ g)(-4)=4$$
B
$$(f \circ g)(2)=2$$
C
$$(g \circ f)(-2)=2$$
D
$$(g \circ f)(4)=4$$
2
KCET 2023
MCQ (Single Correct Answer)
+1
-0

Let $$f: R \rightarrow R$$ be defined by $$f(x)=3 x^2-5$$ and $$g: R \rightarrow R$$ by $$g(x)=\frac{x}{x^2+1}$$, then $$g \circ f$$ is

A
$$\frac{3 x^2-5}{9 x^4-6 x^2+26}$$
B
$$\frac{3 x^2}{x^4+2 x^2-4}$$
C
$$\frac{3 x^2}{9 x^4+30 x^2-2}$$
D
$$\frac{3 x^2-5}{9 x^4-30 x^2+26}$$
3
KCET 2023
MCQ (Single Correct Answer)
+1
-0

Let the relation $$R$$ be defined in $$N$$ by $$a R b$$, if $$3 a+2 b=27$$, then $$R$$ is

A
$$\left\{\left(0, \frac{27}{2}\right),(1,12),(3,9),(5,6),(7,3)\right\}$$
B
$$\{(1,12),(3,9),(5,6),(7,3),(9,0)\}$$
C
$$\{(2,1),(9,3),(6,5),(3,7)\}$$
D
$$\{(1,12),(3,9),(5,6),(7,3)\}$$
4
KCET 2023
MCQ (Single Correct Answer)
+1
-0

Let $$f(x)=\sin 2 x+\cos 2 x$$ and $$g(x)=x^2-1$$ then $$g(f(x))$$ is invertible in the domain

A
$$x \in\left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$$
B
$$x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
C
$$x \in\left[0, \frac{\pi}{4}\right]$$
D
$$x \in\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12