The rate constant $$k_1$$ and $$k_2$$ for two different reactions are $$10^{16} \times e^{-2000 / T}$$ and $$10^{15} \times e^{-1000 / T}$$ respectively. The temperature at which $$k_1=k_2$$ is
During the electrolysis of brine, by using inert electrodes,
Consider the following 4 electrodes
$$\begin{aligned} & \mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}(s) ; \\ & \mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}(s) ; \\ & \mathrm{C}: \mathrm{Ag}^{+}(0.01 \mathrm{M}) / \mathrm{Ag}(s) ; \\ & \mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}(s) ; E^{\circ}{ }_{\mathrm{Ag}^{+} / \mathrm{Ag}}=+0.80 \mathrm{~V} \end{aligned}$$
Then reduction potential in volts of the electrodes in the order.
When $$\mathrm{FeCl}_3$$ is added to excess of hot water gives a sol '$$X$$'. When $$\mathrm{FeCl}_3$$ is added to $$\mathrm{NaOH}(a q)$$ solution, gives sol '$$Y$$'
$$X$$ and $$Y$$ formed in the above processes respectively are