A sample of water is found to contain $$5.85 \%$$ $$\left(\frac{w}{w}\right)$$ of $$A B$$ (molecular mass 58.5 ) and $$9.50 \%$$ $$\left(\frac{w}{w}\right) X Y_2$$ (molecular mass 95). Assuming $$80 \%$$ ionisation of $$A B$$ and $$60 \%$$ ionisation of $$X Y_2$$, the freezing point of water sample is [Given, $$K_f$$ for water $$1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$$, Freezing point of pure water is $$273 \mathrm{~K}$$ and $$A, B$$ and $$Y$$ are monovalent ions.]
Match the column A (type of crystalline solid) with the column B (example for each type)
A | B | ||
---|---|---|---|
P. | Molecular solid | i. | SiC |
Q. | Ionic solid | ii. | Mg |
R. | Metallic solid | iii. | H$$_2$$O |
S. | Network solid | iv. | MgO |
A metal crystallises in a body centred cubic lattice with the metallic radius $$\sqrt3\mathop A\limits^o $$. The volume of the unit cell in $$\mathrm{m}^3$$ is
The resistance of $$0.1 \mathrm{~M}$$ weak acid $$\mathrm{H} A$$ in a conductivity cell is $$2 \times 10^3 \mathrm{~Ohm}$$. The cell constant of the cell is $$0.78 ~\mathrm{C} \mathrm{~m}^{-1}$$ and $$\lambda_{\mathrm{m}}^{\circ}$$ of acid $$\mathrm{H} A$$ is $$390 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$$. The $$\mathrm{pH}$$ of the solution is