1
GATE PI 1994
MCQ (Single Correct Answer)
+1
-0.3
For the following matrix $$\left[ {\matrix{ 1 & { - 1} \cr 2 & 3 \cr } } \right]$$ the number of positive characteristic roots is
A
one
B
two
C
four
D
cannot be found
2
GATE PI 1994
MCQ (Single Correct Answer)
+1
-0.3
Given matrix $$L = \left[ {\matrix{ 2 & 1 \cr 3 & 2 \cr 4 & 5 \cr } } \right]\,\,$$ and $$M = \left[ {\matrix{ 3 & 2 \cr 0 & 1 \cr } } \right]$$
then $$L \times M$$ is
A
$$\left[ {\matrix{ 8 & 1 \cr {13} & 2 \cr {22} & 5 \cr } } \right]$$
B
$$\left[ {\matrix{ 6 & 5 \cr 9 & 8 \cr {12} & {13} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 8 \cr 2 & {13} \cr 5 & {22} \cr } } \right]$$
D
$$\left[ {\matrix{ 6 & 2 \cr 9 & 4 \cr 0 & 5 \cr } } \right]$$
3
GATE PI 1994
MCQ (Single Correct Answer)
+1
-0.3
Solve for $$y$$ if $${{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0$$ with $$y(0)=1$$ and $${y^1}\left( 0 \right) = - 2$$
A
$$\,\left( {1 - t} \right){e^{ - t}}$$
B
$$\,\left( {1 + t} \right){e^{ t}}$$
C
$$\,\left( {1 + t} \right){e^{ - t}}$$
D
$$\,\left( {1 - t} \right){e^{ t}}$$
4
GATE PI 1994
MCQ (Single Correct Answer)
+1
-0.3
If for a matrix, rank equals both the number of rows and number of columns, then the matrix is called
A
Non-singular
B
singular
C
transpose
D
minor
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12