1
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $M$ is the foot of the perpendicular drawn from $P($ -1,2,-1 ) to the plane passing through the point $A(3,-2,1)$ and perpendicular to the vector $4 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$, then the length of $P M$ is

A
$\frac{16}{3}$
B
$\frac{18}{5}$
C
$\frac{22}{9}$
D
$\frac{28}{9}$
2
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Vectors $\mathbf{p}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}, \mathbf{q}=d \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\mathbf{r}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ forming a $\triangle A B C$ are such that $\mathbf{p}=\mathbf{q}+\mathbf{r}$. If the area of $\triangle A B C$ is $5 \sqrt{6}$ sq. units, then the sum of the absolute values of $a, b, c$ is

A
14
B
13
C
12
D
10
3
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$\mathbf{b}$ and $\mathbf{c}$ are non-collinear vectors and $(\mathbf{c} \cdot \mathbf{c}) \mathbf{a}=\mathbf{c}$. If $(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}+(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}$ $=(4-2 \beta-\sin \alpha) \mathbf{b}+\left(\beta^2-1\right) \mathbf{c}$, then $\sin (\alpha+\beta)=$

A
0
B
1
C
$\sin 1$
D
$\cos 1$
4
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Assertion (A) The variance of the first $n$ odd natural numbers is $\frac{n^2-1}{3}$.

Reason (R) The sum of the first $n$ odd natural numbers is $n^2$ and the sum of the squares of the first $n$ odd natural numbers is $\frac{n\left(4 n^2-1\right)}{3}$.

Which of the following alternatives is correct?

A
(A) and (R) are true, (R) is correct explanation of (A)
B
(A) and (R) are true, (R) is not a correct explanation of (A)
C
(A) is true but (R) is false
D
(A) is false but (R) is true
EXAM MAP