Area bounded by the lines $$y=x, x=-1, x=2$$ and the $$X$$-axis is
$$\int \frac{\mathrm{dx}}{32-2 \mathrm{x}^2}=\mathrm{A} \log (4-\mathrm{x})+\mathrm{B} \log (4+\mathrm{x})+\mathrm{c}$$, then the values of $$\mathrm{A}$$ and $$\mathrm{B}$$ are respectively (where c is a constant of integration)
If $$\mathrm{A}$$ and $$\mathrm{B}$$ are the foot of the perpendicular drawn from the point $$\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c})$$ to the planes $$\mathrm{YZ}$$ and $$\mathrm{ZX}$$ respectively, then the equation of the plane through the points $$\mathrm{A}, \mathrm{B}$$, and $$\mathrm{O}$$ is (where $$\mathrm{O}$$ is the origin)
If $$|\vec{a}|=4,|\vec{b}|=5$$, then the values of $$k$$ for which $$\vec{a}+k \vec{b}$$ is perpendicular to $$\vec{a}-k \vec{b}$$ are