A p-n junction photodiode is fabricated from a semiconductor with a band gap of $$2.5 \mathrm{~eV}$$. It can detect a signal of wavelength [Planck's constant $$=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$$]
Two tuning forks of frequencies $$320 \mathrm{~Hz}$$ and $$480 \mathrm{~Hz}$$ are sounded together to produce sound waves. The velocity of sound in air is $$320 \mathrm{~ms}^{-1}$$. The difference between wavelengths of these waves is nearly
A monoatomic ideal gas initially at temperature $$\mathrm{T}_1$$ is enclosed in a cylinder fitted with 8 frictionless piston. The gas is allowed to expand adiabatically to a temperature $$\mathrm{T}_2$$ by releasing the piston suddenly. $$\mathrm{L}_1$$ and $$\mathrm{L}_2$$ are the lengths of the gas columns before and after the expansion respectively. Then $$\frac{\mathrm{T}_2}{\mathrm{~T}_1}$$ is
For a monoatomic gas, the work done at constant pressure is '$$\mathrm{W}$$' The heat supplied at constant volume for the same rise in temperature of the gas is
$$[\gamma=\frac{C_p}{C_v}=\frac{5}{2}$$ for monoatomic gas]