1
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$(2 y-1) d x-(2 x+3) d y=0$$ is

A
$$(2 x+3)^2=c(2 y-1)$$
B
$$\frac{2 x+3}{2 y-1}=c$$
C
$$(2 x+3)(2 y-1)=c$$
D
$$(2 x+3)(2 y-1)^2=c$$
2
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=\log _{10} x+\log _x 10+\log _x x+\log _{10} 10$$, then $$\frac{d y}{d x}=$$

A
$$\frac{1}{x \log _e 10}+\frac{1}{x \log _{10} e}$$
B
$$\frac{1}{x \log _e 10}+\frac{\log _e 10}{x\left(\log _{10} e\right)^2}$$
C
$$\frac{1}{x \log _e 10}-\frac{1}{x \log _{10} e}$$
D
$$\frac{1}{x \log _e 10}-\frac{\log _e 10}{x\left(\log _e x\right)^2}$$
3
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $$\vec{a}=2 \hat{i}+p \hat{j}+4 \hat{k}$$ and $$\vec{b}=6 \hat{i}-9 \hat{j}+q \hat{k}$$ are collinear, then $$p$$ and $$q$$ are

A
$$\mathrm{p=3, q=-12}$$
B
$$\mathrm{p}=3, \mathrm{q}=12$$
C
$$\mathrm{p}=-3, \mathrm{q}=12$$
D
$$\mathrm{p}=-3, \mathrm{q}=-12$$
4
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=\tan ^{-1}\left[\frac{\log \left(\frac{e}{x^2}\right)}{\log \left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log x}{1-6 \log x}\right]$$, then $$\frac{d^2 y}{d x^2}=$$

A
$$\frac{2}{1+x^2}$$
B
$$\frac{1}{1+x^2}$$
C
$$\frac{3}{1+x^2}$$
D
0
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12