1
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the probability distribution function of a random variable X is given as

$$\mathrm{X=x_i}$$ $$-2$$ $$-1$$ 0 1 2
$$\mathrm{P(X=x_i)}$$ 0.2 0.3 0.15 0.25 0.1

Then F(0) is equal to

A
$$\mathrm{P}(\mathrm{X}>0)$$
B
$$\mathrm{1-P(X>0)}$$
C
$$1-\mathrm{P}(\mathrm{X}<0)$$
D
$$\mathrm{P}(\mathrm{X}<0)$$
2
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$ \frac{d y}{d x}=\frac{x+y+1}{x+y-1} $$ when $$ \mathrm{x}=\frac{2}{3} $$ and $$ y=\frac{1}{3} $$ is

A
$$ 2 x+2 y-2=\log |x+y| $$
B
$$ y-x+\frac{1}{3}=\log |x+y| $$
C
$$ x+y-1=\log |x+y| $$
D
$$ 4 x-5 y-1=\log |x+y| $$
3
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$a \sin \theta=b \cos \theta$$, where $$a, b \neq 0$$, then $$a\cos 2 \theta+b \sin 2 \theta=$$

A
$$\mathrm{ab}$$
B
a
C
b
D
$$\frac{a}{b}$$
4
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\vec{a}=4 \hat{i}+13 \hat{j}-18 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$$ and $$\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}$$ are three vectors such that $$\vec{a}=x \vec{b}+y \vec{c}$$, then $$x+y=$$

A
$$-1$$
B
$$-2$$
C
5
D
1
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12