. If the current of '$$I$$' A gives rise to a magnetic flux '$$\phi$$' through a coil having '$$N$$' turns then mangetic energy stored in the medium surrounding the coil is
An ideal gas with pressure $$\mathrm{P}$$, volume $$\mathrm{V}$$ and temperature $$\mathrm{T}$$ is expanded isothermally to a volume $$2 \mathrm{~V}$$ and a final pressure $$\mathrm{P}_{\mathrm{i}}$$. The same gas is expanded adiabatically to a volume $$2 \mathrm{~V}$$, the final pressure is $$\mathrm{P}_{\mathrm{a}}$$. In terms of the ratio of the two specific heats for the gas '$$\gamma$$', the ratio $$\frac{P_i}{P_a}$$ is
Which graph shows the correct variation of r.m.s. current 'I' with frequency 'f' of a.c. in case of (LCR) parallel resonance circuit?
At what temperature does the average translational kinetic energy of a molecule in a gas becomes equal to kinetic energy of an electron accelerated from rest through potential difference of 'V' volt?
($$\mathrm{N}=$$ number of molecules, $$\mathrm{R}=$$ gas constant, $$\mathrm{c}=$$ electronic charge)