1
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=\tan ^{-1}\left[\frac{\log \left(\frac{e}{x^2}\right)}{\log \left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log x}{1-6 \log x}\right]$$, then $$\frac{d^2 y}{d x^2}=$$

A
$$\frac{2}{1+x^2}$$
B
$$\frac{1}{1+x^2}$$
C
$$\frac{3}{1+x^2}$$
D
0
2
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function

$$\begin{array}{rlrl} f(x) & =3 a x+b, & & \text { for } x<1 \\ & =11, & & \text { for } x=1 \\ & =5 a x-2 b, & \text { for } x>1 \end{array}$$

is continuous at $$x=1$$. Then, the values of $$a$$ and $$b$$ are

A
$$\mathrm{a}=2, \mathrm{~b}=3$$
B
$$\mathrm{a=3, b=3}$$
C
$$\mathrm{a=2, b=2}$$
D
$$\mathrm{a}=3, \mathrm{~b}=2$$
3
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{P}(\mathrm{A})=\frac{3}{10}, \mathrm{P}(\mathrm{B})=\frac{2}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{5}$$, then $$\mathrm{P}(\mathrm{A} / \mathrm{B}) \times \mathrm{P}(\mathrm{B} / \mathrm{A})=$$

A
$$\frac{1}{3}$$
B
$$\frac{1}{12}$$
C
$$\frac{1}{10}$$
D
$$\frac{1}{4}$$
4
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x=$$

A
0
B
4log3
C
$$\frac{1}{2}$$
D
2log4
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12