1
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$$, then the value of determinant of $$A^{-1}$$ is

A
$$-6$$
B
$$\frac{-1}{6}$$
C
$$\frac{1}{36}$$
D
$$36$$
2
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

Solution of the differential equation $$\mathrm{y'=\frac{(x^2+y^2)}{xy}}$$, where y(1) = $$-$$2 is given by

A
$$y^2=4 x^2 \log x^2+x^2$$
B
$$y^2=x^2 \log x-x^2$$
C
$$y^2=x \log x^2+4 x^2$$
D
$$\mathrm{y}^2=\mathrm{x}^2 \log \mathrm{x}^2+4 \mathrm{x}^2$$
3
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The Cartesian equation of a line is $$3 x+1=6 y-2=1-z$$, then its vector equation is

A
$$\bar{\mathrm{r}}=\left(\frac{-1}{3} \hat{\mathrm{i}}+\frac{1}{3} \hat{\mathrm{j}}+\hat{\mathrm{k}}\right)+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-6 \hat{\mathrm{k}})$$
B
$$\bar{r}=(-\hat{i}+2 \hat{j}-\hat{k})+\lambda(3 \hat{i}+6 \hat{j}-\hat{k})$$
C
$$\bar{r}=\left(\frac{-1}{3} \hat{i}+\frac{1}{3} \hat{j}+\hat{k}\right)+\lambda(2 \hat{i}-\hat{j}+6 \hat{k})$$
D
$$\bar{\mathrm{r}}=\left(\frac{-1}{3} \hat{\mathrm{i}}+\frac{1}{3} \hat{\mathrm{j}}+\hat{\mathrm{k}}\right)+\lambda(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-6 \hat{\mathrm{k}})$$
4
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The position vector of the point of inersection of the medians of a triangle, whose vertices are $$A(1,2,3), B(1,0,3)$$ and $$C(4,1,-3)$$ is

A
$$6 \hat{i}+3 \hat{j}+3 \hat{k}$$
B
$$2 \hat{i}+\hat{j}+\hat{k}$$
C
$$3 \hat{i}+\hat{j}+\hat{k}$$
D
$$\hat{i}+\hat{j}+\hat{k}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12