The equation of a circle that passes through the origin and cut off intercepts $$-2$$ and 3 on the $$\mathrm{X}$$-axis and $$\mathrm{Y}$$-axis respectively is
Let
$$f(x)\matrix{ { = |x| + 3,} & {if\,x \le - 3} \cr { = - 2x,} & {if\, - 3 < x < 3} \cr { = 6x - 2,} & {if\,x \ge 3} \cr } $$, then
The particular solution of the diffrential equation $$y(1+\log x)=\left(\log x^x\right) \frac{d y}{d x}$$, when $$y(e)=e^2$$ is
If statements $$\mathrm{p}$$ and $$\mathrm{q}$$ are true and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false, then truth values of $$\sim(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{r} \wedge \mathrm{s})$$ and $$(\sim \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \leftrightarrow \mathrm{s})$$ are respectively.