1
KCET 2019
MCQ (Single Correct Answer)
+1
-0

A unit vector perpendicular to the plane containing the vector $$\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$$ is

A
$$\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
B
$$\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$$
C
$$\frac{-\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$$
D
$$\frac{-\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$$
2
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$[\mathbf{a}+2 \mathbf{b}-\mathbf{c}, \mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{b}-\mathbf{c}]=$$

A
$$2[\mathbf{a}, \mathbf{b}, \mathbf{c}]$$
B
0
C
$$3[\mathbf{a}, \mathbf{b}, \mathbf{c}]$$
D
$$[\mathbf{a}, \mathbf{b}, \mathbf{c}]$$
3
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$\sqrt[3]{y} \sqrt{x}=\sqrt[6]{(x+y)^5}$$, then $$\frac{d y}{d x}=$$

A
$$x-y$$
B
$$\frac{x}{y}$$
C
$$\frac{y}{x}$$
D
$$x+y$$
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

Rolle's theorem is not applicable in which one of the following cases?

A
$$f(x)=|x|$$ in $$[-2,2]$$
B
$$f(x)=x^2-4 x+5$$ in [1, 3]
C
$$f(x)=[x]$$ in $$[25,27]$$
D
$$f(x)=x^2-x$$ in $$[0,1]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12