1
KCET 2019
MCQ (Single Correct Answer)
+1
-0

If the value of a third order determinant is 16, then the value of the determinant formed by replacing each of its elements by its cofactor is

A
256
B
96
C
16
D
48
2
KCET 2019
MCQ (Single Correct Answer)
+1
-0

$$\int x^3 \sin 3 x d x=$$

A
$$-\frac{x^3 \cdot \cos 3 x}{3}+\frac{x^2 \sin 3 x}{3}+\frac{2 x \cos 3 x}{9} -\frac{2 \sin 3 x}{27}+C$$
B
$$-\frac{x^3 \cdot \cos 3 x}{3}-\frac{x^2 \sin 3 x}{3}+\frac{2 x \cos 3 x}{9} -\frac{2 \sin 3 x}{27}+C$$
C
$$-\frac{x^3 \cdot \cos 3 x}{3}+\frac{x^2 \sin 3 x}{3}-\frac{2 x \cos 3 x}{9} -\frac{2 \sin 3 x}{27}+C$$
D
$$\frac{x^3 \cdot \cos 3 x}{3}+\frac{x^2 \sin 3 x}{3}-\frac{2 x \cos 3 x}{9} -\frac{2 \sin 3 x}{27}+C$$
3
KCET 2019
MCQ (Single Correct Answer)
+1
-0

The area of the region above $$X$$-axis included between the parabola $$y^2=x$$ and the circle $$x^2+y^2=2 x$$ in square units is

A
$$\frac{2}{3}-\frac{\pi}{4}$$
B
$$\frac{\pi}{4}-\frac{3}{2}$$
C
$$\frac{\pi}{4}-\frac{2}{3}$$
D
$$\frac{3}{2}-\frac{\pi}{4}$$
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

The area of the region bounded by $$Y$$-axis, $$y=\cos x$$ and $$y=\sin x, 0 \leq x \leq \frac{\pi}{2}$$ is

A
$$\sqrt{2}+1$$ sq units
B
$$\sqrt{2}-1$$ sq units
C
$$2-\sqrt{2}$$ sq units
D
$$\sqrt{2}$$ sq units
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12