1
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $a \neq 0$ and $\vec{a} \times \vec{b}=2(\vec{a} \times \vec{c}),|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$ if $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then $\lambda^2$ equals :
A
$-$4
B
16
C
1
D
4
2
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
The general solution of the differential equation $(x-y) d y=(x+y) d x$ is
A
$\tan ^{-1}\left(\frac{y}{x}\right)=c \sqrt{x^2+y^2}$
B
$\tan ^{-1}\left(\frac{y}{x}\right)=x^2+y^2+c$
C
$e^{\tan ^{-1}\left(\frac{y}{x}\right)}=\frac{c \sqrt{x^2+y^2}}{x}$
D
$e^{\tan ^{-1}\left(\frac{y}{x}\right)}=c \sqrt{x^2+y^2}$
3
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
A line $L_1$ passes through the points $(h, k),(1,2)$ and $(-3,4)$. The points $(4,3)$ and $(h, k)$ lie on the line $L_2$. Given $L_1 \perp L_2$ then $(k-h)$ equals to
A
2
B
$\frac{1}{2}$
C
$-$2
D
0
4
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let $M$ be the set of all $2 \times 2$ matrices with entries from the set R of real numbers. Then the function $f: M \rightarrow R$ defined by $f(A)=|A|$ for every $A \in M$ is
A
neither one-one nor onto
B
one-one but not onto
C
onto but not one-one
D
one-one and onto
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12