1
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
$0.2+0.22+0.022+\ldots \ldots \ldots$. up to $n$ terms is equal to
A
$\frac{2}{9}-\frac{2}{81}\left(1-10^{-n}\right)$
B
$\frac{2}{9}\left[n-\frac{1}{9}\left(1-10^{-n}\right)\right]$
C
$\frac{2}{9}\left(1-10^{-n}\right)$
D
$\frac{n}{9}\left(1-10^{-n}\right)$
2
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
The solution set of the system of inequalities $5-4 x \leq-7$ or $5-4 x \geq 7, x \in R$ is
A
$\left(-\infty,-\frac{1}{2}\right) \cap[3, \infty)$
B
$\left(-\infty,-\frac{1}{2}\right) \cup(3, \infty)$
C
$\left(-\infty,-\frac{1}{2}\right] \cap(3, \infty)$
D
$\left(-\infty,-\frac{1}{2}\right] \cup[3, \infty)$
3
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
$-\frac{2 \pi}{5}$ is the principal value of
A
$\sin ^{-1}\left[\sin \left(\frac{7 \pi}{5}\right)\right]$
B
$\tan ^{-1}\left[\tan \left(\frac{7 \pi}{5}\right)\right]$
C
$\cos ^{-1}\left[\cos \left(\frac{7 \pi}{5}\right)\right]$
D
$\sec ^{-1}\left[\sec \left(\frac{7 \pi}{5}\right)\right]$
4
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
The digits of a three-digit number taken in an order are in geometric progression. If one is added to the middle digit, they form an arithmetic progression. If 594 is subtracted from the number, then a new number with the same digits in reverse order is formed. The original number is divisible by
A
19
B
11
C
421
D
4
EXAM MAP