1
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The interval containing all the real values of $x$ such that the real valued function $f(x)=\sqrt{x}+\frac{1}{\sqrt{x}}$ is strictly increasing is
A
$(1, \infty)$
B
$(0,1)$
C
$(-\infty, 0) \cup(1, \infty)$
D
$(-\infty, 0)$
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int e^{4 x^2+8 x-4}(x+1) \cos \left(3 x^2+6 x-4\right) d x$ is equal to
A
$\frac{e^{4 x^2+8 x-4}}{25}\left[3 \sin \left(3 x^2+6 x-4\right)-4 \cos \left(3 x^2+6 x-4\right)\right]+c$
B
$\frac{e^{4 x^2+8 x-4}}{50}\left[4 \cos \left(3 x^2+6 x-4\right)+3 \sin \left(3 x^2+6 x-4\right]+c\right.$
C
$\frac{e^{4 x^2+8 x-4}}{25}\left[3 \cos \left(3 x^2+6 x-4\right)+4 \sin \left(3 x^2+6 x-4\right]+c\right.$
D
$\frac{e^{4 x^2+8 x-4}}{50}\left[4 \sin \left(3 x^2+6 x-4\right)+3 \cos \left(3 x^2+6 x-4\right]+c\right.$
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int\left[(\log 2 x)^2+2 \log 2 x\right] d x$ is equal to
A
$(\log 2 x)^2+c$
B
$2 x \log 2 x+c$
C
$x(\log 2 x)^2+c$
D
$2 x(\log x)^2+c$
4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $\int \log \left(6 \sin ^2 x+17 \sin x+12\right) \cos x d x=f(x)+c$, then $f\left(\frac{\pi}{2}\right)$ is equal to

A
$\frac{1}{6}\left[\log 5^5+\log 7^7-12\right]$
B
$\frac{1}{6}[7 \log 5+5 \log 7+29]$
C
$\frac{1}{6}[14 \log 5+15 \log 7+12]$
D
$\frac{1}{6}[15 \log 5+14 \log 7-29]$ $$ $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12