1
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 3 & 0 \\ 4 & 0 & 3\end{array}\right]$ and $B$ is a matrix such that $A B=B A$.If $A B$ is not an identity matrix, then the matrix that can be taken as $B$ is
A
$\left[\begin{array}{ccc}-9 & -3 & 6 \\ -6 & 8 & -4 \\ 12 & -4 & -2\end{array}\right]$
B
$\left[\begin{array}{ccc}9 & -3 & 6 \\ -6 & 8 & -4 \\ -12 & -4 & 2\end{array}\right]$
C
$\left[\begin{array}{ccc}9 & -3 & -6 \\ -6 & 8 & -4 \\ -12 & 4 & -2\end{array}\right]$
D
$\left[\begin{array}{ccc}9 & -3 & -6 \\ -6 & -8 & 4 \\ -12 & 4 & -2\end{array}\right]$
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $\alpha, \beta$ and $\gamma(\alpha<\beta<\gamma)$ are the values of $x$ such that $\left[\begin{array}{ccc}x-2 & 0 & 1 \\ 1 & x+3 & 2 \\ 2 & 0 & 2 x-1\end{array}\right]$ is a singular matrix, then $2 \alpha+3 \beta+4 \gamma$ is equal to

A
4
B
0
C
1
D
2
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The system of linear equations $x+2 y+z=-3$, $3 x+3 y-2 z=-1$ and $2 x+7 y+7 z=-4$ has
A
infinite number of solutions
B
no solution
C
unique solution
D
finite number of solutions
4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\arg \left[\frac{(1+i \sqrt{3})(-\sqrt{3}-i)}{(1-i)(-i)}\right]$ is equal to
A
$\frac{5 \pi}{6}$
B
$\frac{\pi}{4}$
C
$\frac{2 \pi}{3}$
D
$\frac{-\pi}{2}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12