1
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \mathop {\lim }\limits_{x \to \infty }\left[\left(1+\frac{1}{n^3}\right)^{\frac{1}{n^3}}\left(1+\frac{8}{n^3}\right)^{\frac{4}{n^3}}\left(1+\frac{27}{n^3}\right)^{\frac{9}{n^3}} \ldots . .(2)^{\frac{1}{n}}\right] \text { is equaln } $$

A
$\log 2-\frac{1}{2}$
B
$e^{\left(\log 2-\frac{1}{2}\right)}$
C
$e^{\left(\frac{2 \log 2-1}{3}\right)}$
D
$\frac{1}{3}(2 \log 2-1)$
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int\limits_{-5 \pi}^{5 \pi}(1-\cos 2 x)^{\frac{5}{2}} d x$ is equal to
A
$\frac{64 \sqrt{2}}{5}$
B
$\frac{128 \sqrt{2}}{5}$
C
$\frac{256 \sqrt{2}}{3}$
D
$\frac{128 \sqrt{2}}{3}$
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The differential equation of the family of hyperbols having their centres at origin and their axes along coordinates axes is
A
$x y y_2+x y_1^2-y y_1=0$
B
$x y_2-x y y_1^2+y y_1=0$
C
$x y y_2+x y_1^2+y y_1=0$
D
$x y_2+x y_1^2-y_1=0$
4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The general solution of the differential equation $\left(x y+y^2\right) d x-\left(x^2-2 x y\right) d y=0$ is

A
$c x y^2=e^{\frac{x}{y}}$
B
$c x y^2 e^{\frac{x}{y}}=1$
C
$c x y e^{\frac{x}{y}}=1$
D
$c x y=e^{\frac{x}{y}}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12