1
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{1}{\left(1+x^2\right) \sqrt{x^2+2}} d x$ is equal to
A
$-\tan ^{-1} \frac{\sqrt{x^2+2}}{|x|}+c$
B
$-\tan ^{-1} \sqrt{x^2+2}+c$
C
$-\tan ^{-1} \sqrt{\frac{x^2+1}{x^2+2}}+c$
D
$-\tan ^{-1} \sqrt{\frac{x^2+2}{x^2+1}}+c$
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int \sin ^4 x \cos ^4 x d x$ is equal to
A
$\frac{1}{128}\left(-2 \sin ^3 x \cos x-3 \sin x \cos x+3\right)+c$
B
$\frac{1}{256}\left(-2 \sin ^3 2 x \cos 2 x-3 \sin 2 x \cos 2 x+6 x\right)+c$
C
$\frac{1}{128}\left(2 \sin ^3 x \cos x-3 \sin x \cos x+3 x\right)+c$
D
$\frac{1}{256}\left(3 \sin ^3 x \cos x-2 \sin x \cos x+2\right)+c$
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int_0^1 \sqrt{\frac{2+x}{2-x}} d x$ is equal to
A
$\pi+2$
B
$\frac{1}{2}(\pi+2)$
C
$\frac{\pi}{2}+2+\sqrt{3}$
D
$\frac{\pi}{3}+2-\sqrt{3}$
4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $M=\int\limits_0^{\infty} \frac{\log t}{1+t^3} d t$ and $N=\int\limits_{-\infty}^{\infty} \frac{t e^{2 t}}{1+e^{3 t}} d t$, then
A
$N=2 M$
B
$N=M$
C
$N=3 M$
D
$N=-M$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12