1
GATE PI 2016
Numerical
+2
-0
A cylindrical bar of $$100$$ $$mm$$ diameter is orthogonally straight turned with cutting velocity, feed and depth of cut of $$120$$ $$m/min$$, $$0.25$$ $$mm/rev$$ and $$4$$ $$mm,$$ respectively. The specific cutting energy of the work material is $$1 \times {10^9}\,\,J/{m^3}.$$ Neglect the contribution of feed force towards cutting power. The main or tangential cutting force (in $$N$$) is __________________
2
GATE PI 2016
Numerical
+2
-0
A $$60$$ $$mm$$ wide block of low carbon steel is face milled at a cutting speed of $$120$$ $$m/min,$$ feed of $$0.1$$ $$mm$$/tooth and axial depth of cut of $$4$$ $$mm.$$ A schematic representation of the face milling process is shown below. The diameter of the cutter is $$120$$ $$mm$$ and it has $$12$$ cutting edges. The material removal rate (in $$m{m^3}/s)$$ is __________ 3
GATE PI 2015
Numerical
+2
-0
In an orthogonal machining experiment carried out using a cutting tool with zero degree rake angle, the measured cutting force was $$1700$$ $$N.$$ If the friction angle at the rake face-chip interface is $${26^ \circ },$$ then the thrust force value, in $$N$$ is ___________________
4
GATE PI 2013
+2
-0.6
Two cutting tools are being compared for a machining operation. The tool life equations are:
\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,\,Carbi{\mathop{\rm de}\nolimits} \,\,tool:\,\,\,\,\,\,\,\,\,\,\,\,V{T^{1.6}} = 3000 \cr & \,\,\,\,\,\,\,\,\,\,\,\,HSS\,\,tool:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,V{T^{0.6}} = 200 \cr}

Where $$V$$ is the cutting speed in $$m/min$$ and $$T$$ is the tool life in $$min.$$ The carbide tool will provide higher tool life if the cutting speed in $$m/min$$ exceeds

A
$$15.0$$
B
$$39.4$$
C
$$49.3$$
D
$$60.0$$
GATE PI Subjects
Fluid Mechanics
Metrology
Theory of Machines
Engineering Mathematics
Heat Transfer
Machine Tools and Machining
Industrial Engineering
Engineering Mechanics
Strength of Materials
Thermodynamics
Machine Design
Casting
Joining of Materials
Metal Forming
EXAM MAP
Joint Entrance Examination