1
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

    Consider the parabola $25\left[(x-2)^2+(y+5)^2\right]=(3 x+4 y-1)^2$, match the characteristic of this parabola given in List I with its corresponding item in List II.

    $$ \begin{array}{lll} \hline & \text { List I } & \text { List II } \\\\ \hline \text { I } & \text { Vertex } & \text { (A) } 8 \\\\ \hline \text { II } & \text { length of latus rectum } & \text { (B) }\left(\frac{29}{10}, \frac{-38}{10}\right) \\\\ \hline \text { III } & \text { Directrix } & \text { (C) } 3 x+4 y-1=0 \\\\ \hline \text { IV } & \begin{array}{l} \text { One end of the latus } \\\\ \text { rectum } \end{array} & \text { (D) }\left(\frac{-2}{5}, \frac{-16}{5}\right) \\\\ \hline \end{array} $$

    The correct answer is

A
I-B, II-E, III-C, IV-D
B
I-D, II-A, III-C, IV-B
C
I-B, II-A, III-C, IV-D
D
I-D, II-B, III-C, IV-A
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $6 x-5 y-20=0$ is a normal to the ellipse $x^2+3 y^2=K$, then $K=$
A
9
B
17
C
25
D
37
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The point of intersection of two tangents drawn to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{4}=1$ lie on the circle $x^2+y^2=5$. If these tangents are perpendicular to each other, then $a=$
A
25
B
5
C
9
D
3
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the ratio of the perpendicular distances of a variable point $P(x, y, z)$ from the $X$-axis and from the $Y Z$ - plane is $2: 3$, then the equation of the locus of $P$ is
A
$4 x^2-9 y^2-9 z^2=0$
B
$9 x^2-4 y^2-4 z^2=0$
C
$4 x^2-4 y^2-9 z^2=0$
D
$9 x^2-9 y^2-4 z^2=0$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12