1
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$A, B, C$ and $D$ are square matrices such that $A+B$ is symmetric, $A-B$ is skew-symmetric and $D$ is the transpose of $C$. If $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\\\ 4 & 3 & -2 \\\\ 3 & -4 & 5\end{array}\right]$ and $C=\left[\begin{array}{ccc}0 & 1 & -2 \\\\ 2 & -1 & 0 \\\\ 0 & 2 & 1\end{array}\right]$, then the matrix $B+D=$
A
$\left[\begin{array}{ccc}-1 & 6 & 3 \\\\ 6 & 2 & -2 \\\\ 3 & -2 & 6\end{array}\right]$
B
$\left[\begin{array}{ccc}-1 & 6 & 3 \\\\ 3 & 2 & -2 \\\\ 1 & -2 & 6\end{array}\right]$
C
$\left[\begin{array}{ccc}3 & 2 & -2 \\\\ 2 & 6 & 3 \\\\ -2 & 3 & 2\end{array}\right]$
D
$\left[\begin{array}{ccc}1 & -2 & 6 \\\\ -2 & 3 & 2 \\\\ 6 & 2 & 1\end{array}\right]$
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $A$ is square matrix and $A^2+I=2 A$, then $A^9=$
A
$8 A^2-71$
B
$9 A+81$
C
$9 A-8 I$
D
$8 A^2+7 I$
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\operatorname{det}\left[\begin{array}{ccc}\frac{a^2+b^2}{c} & c & c \\\\ a & \frac{b^2+c^2}{a} & a \\\ b & b & \frac{c^2+a^2}{b}\end{array}\right]=$
A
$(a-b)(b-c)(c-a)$
B
$(a+b)(b+c)(c+a)$
C
$2 a b c$
D
$4 a b c$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The system of simultaneous linear equations

$$ \begin{aligned} & x-2 y+3 z=4,3 x+y-2 z=7 \\ & 2 x+3 y+z=6 \text { has } \end{aligned} $$

A
infinitely many solutions.
B
no solution.
C
unique solution having $z=2$.
D
unique solution having $z=\frac{1}{2}$.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12