A $4 \mu \mathrm{~F}$ capacitor is charged to 10 V . The battery is then disconnected and a pure 10 mH coil is connected across the capacitor so that LC oscillations are set up. The maximum current in the coil is
An object of mass 0.2 kg executes simple harmonic oscillations along the x -axis with frequency of $\left(\frac{25}{\pi}\right) \mathrm{Hz}$. At the position $x=0.04 \mathrm{~m}$, the object has kinetic energy 1 J and potential energy 0.6 J . The amplitude of oscillation is
Two current carrying identical coils are kept as shown in figure. The magnetic field at centre ' O ' is ( N and R represent the number of turns and radius of each coil respectively, $\mu_0=$ permeability of free space)

A motor cyclist has to rotate in horizontal circles inside the cylindrical wall of inner radius ' $R$ ' metre. If the coefficient of friction between the wall and the tyres is ' $\mu_{\mathrm{s}}$ ', then the minimum speed required is ( $\mathrm{g}=$ acceleration due to gravity)