1
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$\frac{d y}{d x}=\frac{y+1}{x^2-x}$$, when $$x=2$$ and $$y=1$$ is

A
$$x y=4 x-6$$
B
$$x y=2 x-2$$
C
$$x y=x-2$$
D
$$x y=-x+4$$
2
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distribution function $$F(X)$$ of discrete random variable $$X$$ is given by

$$\mathrm{X}$$ 1 2 3 4 5 6
$$\mathrm{F (X=x)}$$ 0.2 0.37 0.48 0.62 0.85 1

Then $$\mathrm{P[X=4]+P[x=5]=}$$

A
0.14
B
0.85
C
0.37
D
0.23
3
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $$\frac{d y}{d x}=\frac{x+y}{x-y}$$ is

A
$$\tan ^{-1} \frac{x}{y}+\frac{1}{2} \log \left|x^2+y^2\right|=c$$
B
$$\tan ^{-1} \frac{y}{x}+\frac{1}{2} \log \left|x^2+y^2\right|=c$$
C
$$\tan ^{-1} \frac{y}{x}-\frac{1}{2} \log \left|x^2+y^2\right|=c$$
D
$$\tan ^{-1} \frac{x}{y}-\frac{1}{2} \log \left|x^2+y^2\right|=c$$
4
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line drawn from a point $$A(-2,-2,3)$$ and parallel to the line $$\frac{x}{-2}=\frac{y}{2}=\frac{z}{-1}$$ meets the $$\mathrm{YOZ}$$ plane in point $$\mathrm{P}$$, then the co-ordinates of the point $$\mathrm{P}$$ are

A
$$(0,4,-4)$$
B
$$(0,2,2)$$
C
$$(0,-2,2)$$
D
$$(0,-4,4)$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12