1
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$\frac{d y}{d x}=\frac{y+1}{x^2-x}$$, when $$x=2$$ and $$y=1$$ is

A
$$x y=4 x-6$$
B
$$x y=2 x-2$$
C
$$x y=x-2$$
D
$$x y=-x+4$$
2
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distribution function $$F(X)$$ of discrete random variable $$X$$ is given by

$$\mathrm{X}$$ 1 2 3 4 5 6
$$\mathrm{F (X=x)}$$ 0.2 0.37 0.48 0.62 0.85 1

Then $$\mathrm{P[X=4]+P[x=5]=}$$

A
0.14
B
0.85
C
0.37
D
0.23
3
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $$\frac{d y}{d x}=\frac{x+y}{x-y}$$ is

A
$$\tan ^{-1} \frac{x}{y}+\frac{1}{2} \log \left|x^2+y^2\right|=c$$
B
$$\tan ^{-1} \frac{y}{x}+\frac{1}{2} \log \left|x^2+y^2\right|=c$$
C
$$\tan ^{-1} \frac{y}{x}-\frac{1}{2} \log \left|x^2+y^2\right|=c$$
D
$$\tan ^{-1} \frac{x}{y}-\frac{1}{2} \log \left|x^2+y^2\right|=c$$
4
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line drawn from a point $$A(-2,-2,3)$$ and parallel to the line $$\frac{x}{-2}=\frac{y}{2}=\frac{z}{-1}$$ meets the $$\mathrm{YOZ}$$ plane in point $$\mathrm{P}$$, then the co-ordinates of the point $$\mathrm{P}$$ are

A
$$(0,4,-4)$$
B
$$(0,2,2)$$
C
$$(0,-2,2)$$
D
$$(0,-4,4)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12