1
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\cos x+\sqrt{3} \sin x} d x=$$

A
$$2 \log \left[\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{12}\right)\right]+\mathrm{c}$$
B
$$\frac{1}{2} \log \left[\tan \left(\frac{\mathrm{x}}{2}-\frac{\pi}{12}\right)\right]+\mathrm{c}$$
C
$$\frac{1}{2} \log \left[\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{12}\right)\right]+\mathrm{c}$$
D
$$2 \log \left[\tan \left(\frac{\mathrm{x}}{2}-\frac{\pi}{12}\right)\right]+\mathrm{c}$$
2
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=[8 x]-3$$, where $$[x]$$ is greatest integer function of $$x$$, then $$f(\pi)=$$ (where $$\pi=3,14$$)

A
21
B
25
C
23
D
22
3
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If lines represented by the equation $$\mathrm{px}^2-\mathrm{qy^{2 }}=0$$ are distinct, then

A
$$p <0$$
B
$$p+q=0$$
C
$$p q>0$$
D
$$\mathrm{pq}=0$$
4
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slant height of a right circular cone is $$3 \mathrm{~cm}$$. The height of the cone for maximum volume is

A
$$5 \mathrm{~cm}$$
B
$$\sqrt{5} \mathrm{~cm}$$
C
$$3 \mathrm{~cm}$$
D
$$\sqrt{3} \mathrm{~cm}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12