1
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\cos x+\sqrt{3} \sin x} d x=$$

A
$$2 \log \left[\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{12}\right)\right]+\mathrm{c}$$
B
$$\frac{1}{2} \log \left[\tan \left(\frac{\mathrm{x}}{2}-\frac{\pi}{12}\right)\right]+\mathrm{c}$$
C
$$\frac{1}{2} \log \left[\tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{12}\right)\right]+\mathrm{c}$$
D
$$2 \log \left[\tan \left(\frac{\mathrm{x}}{2}-\frac{\pi}{12}\right)\right]+\mathrm{c}$$
2
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=[8 x]-3$$, where $$[x]$$ is greatest integer function of $$x$$, then $$f(\pi)=$$ (where $$\pi=3,14$$)

A
21
B
25
C
23
D
22
3
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If lines represented by the equation $$\mathrm{px}^2-\mathrm{qy^{2 }}=0$$ are distinct, then

A
$$p <0$$
B
$$p+q=0$$
C
$$p q>0$$
D
$$\mathrm{pq}=0$$
4
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slant height of a right circular cone is $$3 \mathrm{~cm}$$. The height of the cone for maximum volume is

A
$$5 \mathrm{~cm}$$
B
$$\sqrt{5} \mathrm{~cm}$$
C
$$3 \mathrm{~cm}$$
D
$$\sqrt{3} \mathrm{~cm}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12